Cloud-Based Cross-Platform Collaborative AR in Flutter

Lars Carius* Christian Eichhorn®

David A. Plecher® Gudrun Klinker$

Technical University of Munich

ABSTRACT

Augmented Reality (AR) has progressed tremendously over the past
years, enabling the creation of collaborative experiences and real-
time environment tracking on smartphones. The strong tendency
towards game engine-based approaches, however, has made it diffi-
cult for many businesses to utilize the potential of the technology.
We present a novel collaborative AR framework aimed at lowering
the entry barriers and operating expenses of AR applications. Our
framework includes a cross-platform and cloud-based Flutter plugin
combined with a web-based content management system allowing
non-technical staff to take over operational tasks such as providing
3D models or moderating community annotations. To provide a state-
of-the-art feature set, the AR Flutter plugin builds upon ARCore on
Android and ARKit on iOS and unifies the two frameworks using an
abstraction layer written in Dart. We show that the cross-platform
AR Flutter plugin performs on the same level as native AR frame-
works in terms of both application-level metrics like CPU and RAM
consumption and tracking-level qualities such as keyframes per sec-
ond used by the SLAM algorithm, detected feature points, and area
of tracked planes. Our contribution closes a gap in today’s technolog-
ical landscape by providing an AR framework seamlessly integrating
with the familiar development process of cross-platform apps. Using
the AR Flutter plugin and the accompanying content management
system, AR can be used as a tool to achieve business objectives
and is not restrained to stand-alone single-purpose apps anymore,
triggering a potential paradigm shift for previously complex-to-
realize applications of AR, e.g. in production and planning. The
AR Flutter plugin is fully open-source, the code can be found at:
https://github.com/CariuslLars/ar_flutter_plugin.

Index Terms: Augmented Reality, Collaboration, Cross-Platform,
Cloud, Flutter, Open-Source——

1 APPROACH

Augmented Reality (AR) allows for a fundamentally new means of
communication: Anchoring digital information in the real world,
retrievable by anyone visiting the respective location. On-demand
3D scans using the smartphone camera overcome the need for
hand-built 3D environment models and make this technology
widely applicable. However, heavy reliance on game engine-based
development toolchains like Unity has left behind developers of
business applications and has created a technological landscape
dominated by the entertainment industry. We discovered that the
technology can create considerable value once it is used as a tool in
operative business and not primarily as a means of entertainment.
Marking drop-off locations for deliveries to chaotic construction
sites using AR is one of many examples that proved to be a
profitable business case.

*e-mail: lars.carius@tum.de
fe-mail: christian.eichhorn@tum.de
*e-mail: plecher@in.tum.de
Se-mail: klinker@in.tum.de

AR Application

Widget Tree Business Logic

Cloud ur AR
ARView() Callbacks Logic Configuration

AR Flutter Plugin

Cross-Platform APT — v

Widgets AR Managers

. Session Anchor Object Location
ARView
Manager Manager Manager Manager
Platform-Specific
Implementations
P Y JV
Native Views Native Functionality
Tracking Engines Renderers Object Model
. Handler Builder
AR Activity ARCore S fi
[AR UlViewController] ‘ ARKit ‘ ‘ SceneKit ‘ Location Cloud Anchor
Provider Handler

Legend — 5 Platform Channel D Android

—————— Function Call ————————3 Platform View C] i0s

Figure 1: High-level software architecture of the AR Flutter plugin

To utilize this potential, AR functionality needs to be embedded
- as just one of many features - into applications that serve a
larger purpose. With the frameworks currently available, this
is not sufficiently possible. There are a plethora of approaches
trying to solve this challenge, but they either lack the inclusion of
cutting-edge features such as anchoring objects to real-world places
or heavily restrict generality and thus applicability by focusing
development on game scenarios only.

We present a cross-platform, open-source collaborative AR
framework for Flutter to enable more businesses and app developers
to utilize the potential of location-based AR without having to
renounce technical possibilities and performance advantages that
originate from using an established cross-platform app development
toolchain. With our work, we aim to facilitate the development
of complex AR-based workflows such as facility design and
management in production and planning scenarios while, at the
same time, alleviating the need for excessive computing power and
pre-defining the territory of deployment.

2 IMPLEMENTATION

The AR Flutter plugin’s architecture is composed of two parts
(Fig. 1): A unified, cross-platform API providing an interface to
applications using the plugin, and platform-specific implementations
for Android (Kotlin) and iOS (Swift) built upon ARCore and ARKit
to ensure continuous access to cutting-edge functionality.

The exposed section of the framework contains widgets that can
be included in a client app’s widget tree to enhance the UI and
AR managers that handle all functionality and logic related to AR

https://github.com/ CariusLars/ar_flutter_plugin

and serve as the control instruments of the plugin. The session
manager handles tracking configurations, debugging options like

plane visualization, and callbacks for hit-testing and gesture events.

The object manager handles the plugin’s ARNodes which abstract
platform-specific functionality and allows to add, modify, or remove
nodes based on GLTF2- or GLB-format 3D models that can be
compiled into the app bundle or loaded during runtime from the
file system or the internet. We salvaged functionality from existing
single-platform Flutter AR plugins ! to build upon existing research.
To enable collaborative AR experiences [2], the anchor manager
contains functionality to upload and download anchor objects from
a cloud service using the Google Cloud Anchor API. Local 3D
scans used to define anchors can be stored in a cloud system and
the current scene can be compared to already uploaded anchors
in order to download content previously placed in the scene. To
enable efficient location-based anchor querying, the location
manager provides GPS coordinates of the device. The plugin’s
node and anchor object can be serialized and synced with a database.

The largely cloud-agnostic architecture of the AR Flutter plugin
enables the use of external content management systems to reduce
the running costs of commercial AR applications. We demonstrate
a web-based system allowing the modification of both content
used in the app’s UI, such as 3D model files, and data uploaded
by users, such as AR annotations and corresponding text, to be
managed remotely. We utilized the open-source software Firetable?.
New 3D models can easily be added to existing applications in the
spreadsheet-like interface. This content management architecture
enables the operations team to modify content without having to
task the technical development team with updates to the source code.

3 EVALUATION

The usage of cross-platform app development frameworks has many
benefits, however, it can require additional resources to achieve
performance comparable to native applications due to additional
software layers being introduced.

To assess whether or not AR app performance is significantly
impacted by the use of Flutter and the AR Flutter plugin, we
benchmarked our framework against comparable native approaches.

Our results indicate that the usage of Flutter and the AR Flutter
plugin incurs overhead in both build times and application sizes.
On Android, both measurements roughly double when using the
cross-platform approach. On iOS, the build time increases even
more drastically, while application sizes also double.

To assess performance, we tracked average and maximum CPU and
RAM utilization and, on iOS, average frame time. We observed that
on Android, the cross-platform application based on the AR Flutter
plugin performs on the same level as the native Android application.
On i0S, solely the average and maximum RAM utilization exhibit
an increase of roughly 100 MB for the Flutter application.

To reduce the processing load on the device and avoid jerking, AR
frameworks can analyze incoming sensor readings less extensively
or even skip them entirely, resulting in worse augmentation quality
while measurements like framerate remain unchanged.

Thus, to test the quality of the augmentation and, therefore, the scene
understanding performance offered by the AR Flutter plugin, we
conducted a series of experiments directly measuring the number
of features processed by the benchmarking applications, the total
number of AR frames (quantity of SLAM updates), the number of
detected feature points per AR frame (quality of SLAM updates),
and the total detected plane area in a fixed setting.

1G. M. D. Francesco. ArCore Flutter Plugin; O. Leuschenko. ARKit Flutter Plugin
2FiretablePr(7ject. firetable, 2021.

Total Number of | Total Number of | Feature Points | Total Tracked
AR Frames Feature Points per AR Frame | AR Plane Area
Android Native 208 + 12 41000 + 3107 137 +8 8.19 + 0.67 m?
AR Application
Flutter AR 300+ 9 38057 + 2324 126 +7 8.15 + 0.89 m?
Application

Table 1: Tracking quality benchmark on Android

Figure 2: Augmentation of an industrial site

Table 1 shows mean and standard deviation of 5 consecutive
runs of the benchmark on an Android device. The evaluation of
low-level tracking features to measure the plugin’s impact on a
SLAM performance level yields a similar number of AR frames
for both applications. While the total number of feature points,
and, consequently, the average number of feature points per AR
frame, is slightly lower in the cross-platform application, the values’
mean =+ standard deviation intervals still overlap. The plane area
detected by the tracking algorithms directly translates to the area
available for the user to place AR objects onto, rendering it a
valuable criterion for AR performance. The measurements are
almost equal for our and the native approach. Based on this data, it
can be concluded that the SLAM algorithm’s performance suffered
a negligible impact through the additional layer of abstraction our
plugin introduces, allowing for the same level of augmentation
quality in our framework as in state-of-the-art native apps.

4 IMPACT

We introduced a novel cross-platform, cloud-based collaborative
AR framework that allows non-expert developers to utilize the
potential of AR as a feature of their application. Our analyses find
no significant performance difference between a native approach
and our framework. We already proved our plugin’s versatility in an
industrial machinery augmentation project (Fig. 2).

Our contribution facilitates a paradigm shift in the way complex
location-based AR workflows can be established: Instead of having
to resort to preparation-heavy approaches involving 3D models of
the deployment environment and a computation backbone (see [1]),
our plugin allows to utilize AR annotations for tasks like facility
management in unknown terrain on standard smartphone hardware.
On a higher level, our development can be viewed as an effort
to integrate the multifaceted realm of AR frameworks, many of
which are controlled and restricted by large software companies,
into a common, open-source, and cross-platform API. Our approach
builds on a modular architecture, which, combined with a reliance on
efficient patterns and the support of a large community of developers,
has the potential to bundle the technological capabilities of various
frameworks into a powerful single source of AR functionality.

REFERENCES

[1] F Baek, I. Ha, and H. Kim. Augmented reality system for facility
management using image-based indoor localization. Automation in
Construction, 99:18-26, 2019. doi: 10.1016/j.autcon.2018.11.034

[2] H.Kaufmann. Collaborative Augmented Reality in Education. Technical
report, 2003.

	Approach
	Implementation
	Evaluation
	Impact

